Get Smart with Salesforce Einstein
-
Salesforce Einstein Basics
Get Started with Einstein -
Get Started with Einstein7 Topics
-
Learning Objectives - Einstein
-
AI Basics and Smart Assistants
-
I Have AI and Smart Assistants Down. How Does Salesforce Einstein Fit In?
-
But How Can Einstein Specifically Benefit My Business?
-
So What Makes Einstein Different?
-
Do I Have to Be a Genius to Use This? I’m Pretty Sure Einstein Was a Genius
-
The Time Is Now for Salesforce Einstein
-
Learning Objectives - Einstein
-
Learn About Einstein Out-Of-The-Box Applications7 Topics
-
Responsible Creation of Artificial IntelligenceUse the Einstein Platform9 Topics
-
Understand the Ethical Use of Technology8 Topics
-
Learn the Basics of Artificial Intelligence5 Topics
-
Recognize Bias in Artificial Intelligence6 Topics
-
Einstein Bots BasicsRemove Bias from Your Data and Algorithms6 Topics
-
Learn About Einstein Bots6 Topics
-
Plan Your Bot Content4 Topics
-
Einstein Next Best ActionLearn the Prerequisites and Enable Einstein Bots3 Topics
-
Get Started with Einstein Next Best Action9 Topics
-
Learning Objectives - Einstein Next Best Action
-
Rise of Business Intelligence
-
A Wealth of Insights Brings a New Set of Challenges
-
Better Recommendations with Einstein Next Best Action
-
Unify Sources of Insight
-
Connect Recommendations to Automation
-
Surface Actionable Intelligence
-
Applications for Different Lines of Business
-
How Can I Get Einstein Next Best Action?
-
Learning Objectives - Einstein Next Best Action
-
Sales Cloud EinsteinUnderstand How Einstein Next Best Action Works7 Topics
-
Increase Sales Productivity5 Topics
-
Automate Sales Activities5 Topics
-
Target the Best Leads3 Topics
-
Close More Deals6 Topics
-
Connect with Your Customers and Create New Business4 Topics
-
Sales Cloud Einstein Rollout StrategiesImprove Sales Predictions4 Topics
-
Use AI to Improve Sales
-
Start with a Plan
-
Set Goals and Priorities
-
Get Ready for Einstein
-
Quick Start: Einstein Prediction BuilderStart Using Sales Cloud Einstein
-
Sign Up for an Einstein Prediction Builder Trailhead Playground
-
Create a Formula Field to Predict
-
Enrich Your Prediction
-
Build a Prediction
-
Quick Start: Einstein Image ClassificationCreate a List View for Your Predictions
-
Get an Einstein Platform Services Account
-
Get the Code
-
Create a Remote Site
-
Create the Apex Classes
-
Einstein Intent API BasicsCreate the Visualforce Page
-
Get Started with Einstein Language
-
Set Up Your Environment
-
Create the Dataset
-
Train the Dataset and Create a Model
-
Put Predictions into Action with Next Best ActionUse the Model to Make a Prediction
-
Learn the Basics and Set Up a Custom Playground
-
Define and Build a Prediction
-
Customize Your Contact and List Displays
-
Create Recommendations for Einstein Next Best Action
-
Create a Next Best Action Strategy
-
Add Next Best Action to Your Contacts
Participants 106154
You know that bias can enter an AI system through a product’s creators, through training data (or lack of information about all the sources that contribute to a dataset), or from the social context in which an AI is deployed.
Assumptions
Before someone starts building a given system, they often make assumptions about what they should build, who they should build for, and how it should work, including what kind of data to collect from whom. This doesn’t mean that the creators of a system have bad intentions, but as humans, we can’t always understand everyone else’s experiences or predict how a given system will impact others. We can try to limit our own assumptions from entering into a product by including diverse stakeholders and participants in our research and design processes from the very beginning. We should also strive to have diverse teams working on AI systems. Check out the Business Value of Equality Trail to learn more about the advantages of hiring diverse teams.
Training Data
AI models need training data, and it’s easy to introduce bias with the dataset. If a company historically hires from the same universities, same programs, or along the same gender lines, a hiring AI system will learn that those are the best candidates. The system will not recommend candidates that don’t match those criteria.
Model
When you create a machine learning model, the factors that you use in the model, such as race, gender, or age, can result in recommendations or predictions that are biased against certain groups defined by those characteristics. You also need to be on the lookout for factors that function as proxies for these characteristics. Someone’s first name, for example, can be a proxy for gender, race, or country of origin. For this reason, Salesforce Einstein does not use names as factors in its Lead and Opportunity Scoring model.
Human Intervention (or Lack Thereof)
Editing training data directly impacts how the model behaves, and can either add or remove bias. We might remove poor-quality data or overrepresented data points, add labels or edit categories, or exclude specific factors, such as age and race. We can also leave the model as-is, which, depending on the circumstances, can leave room for bias.
The stakeholders in an AI system should have the option to give feedback on its recommendations. This can be implicit (say, the system recommends a book the customer might like and the customer does not purchase it) or explicit (say, the customer gives a thumbs up to a recommendation). This feedback trains the model to do more or less of what it just did. According to GDPR, EU citizens must also be able to correct incorrect information a company has about them and ask for that company to delete their data. Even if not required by law, this is best practice as it ensures your AI is making recommendations based on accurate data and is ensuring customer trust.
